High-Field 2D Solid-State NMR Reveals Cellulose Structural Polymorphism in Plant Primary Cell Walls

(a) Cellulose polymorphism: seven forms

Significance and Impact

Cellulose is the most abundant biopolymer on earth, with plant cell walls as its largest source. The structure of plant primary cell wall cellulose evades high-resolution characterization because of its extensive interactions with matrix polymers, which results in low crystallinity. With high-field 2D SSNMR and DFT calculation, the structural polymorphism and the spatial distribution of plant primary-wall cellulose were unveiled.

Scientific Results

- Plant primary-wall cellulose is highly polymorphic.
- Five types (a-e) of interior cellulose and two types of surface cellulose (f and g) mix in the same microfibril.
- Plant primary-wall cellulose has different structure from celluloses of bacterial, algal, and animal origins
- Cellulose-d interacts with hemicellulose, and is targeted by expansin during wall loosening.

Research Details

 Five primary cell wall samples from Arabidopsis, Maize and Brachypodium were measured using SSNMR.

Wang, T., Yang, H., Kubicki, J.D.& Hong, M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR spectroscopy and Density Functional Theory Calculations. Biomacromolecules 17, 2210-2222 (2016)

lassachusetts

UNIVERSITY OF RHODE ISLAND

nstitute of

PENNSTATE

